95 research outputs found

    A System of Interaction and Structure

    Full text link
    This paper introduces a logical system, called BV, which extends multiplicative linear logic by a non-commutative self-dual logical operator. This extension is particularly challenging for the sequent calculus, and so far it is not achieved therein. It becomes very natural in a new formalism, called the calculus of structures, which is the main contribution of this work. Structures are formulae submitted to certain equational laws typical of sequents. The calculus of structures is obtained by generalising the sequent calculus in such a way that a new top-down symmetry of derivations is observed, and it employs inference rules that rewrite inside structures at any depth. These properties, in addition to allow the design of BV, yield a modular proof of cut elimination.Comment: This is the authoritative version of the article, with readable pictures, in colour, also available at . (The published version contains errors introduced by the editorial processing.) Web site for Deep Inference and the Calculus of Structures at <http://alessio.guglielmi.name/res/cos

    Facilitating the analysis of a UK national blood service supply chain using distributed simulation

    Get PDF
    In an attempt to investigate blood unit ordering policies, researchers have created a discrete-event model of the UK National Blood Service (NBS) supply chain in the Southampton area of the UK. The model has been created using Simul8, a commercial-off-the-shelf discrete-event simulation package (CSP). However, as more hospitals were added to the model, it was discovered that the length of time needed to perform a single simulation severely increased. It has been claimed that distributed simulation, a technique that uses the resources of many computers to execute a simulation model, can reduce simulation runtime. Further, an emerging standardized approach exists that supports distributed simulation with CSPs. These CSP Interoperability (CSPI) standards are compatible with the IEEE 1516 standard The High Level Architecture, the defacto interoperability standard for distributed simulation. To investigate if distributed simulation can reduce the execution time of NBS supply chain simulation, this paper presents experiences of creating a distributed version of the CSP Simul8 according to the CSPI/HLA standards. It shows that the distributed version of the simulation does indeed run faster when the model reaches a certain size. Further, we argue that understanding the relationship of model features is key to performance. This is illustrated by experimentation with two different protocols implementations (using Time Advance Request (TAR) and Next Event Request (NER)). Our contribution is therefore the demonstration that distributed simulation is a useful technique in the timely execution of supply chains of this type and that careful analysis of model features can further increase performance

    Eleven strategies for making reproducible research and open science training the norm at research institutions

    Get PDF
    Reproducible research and open science practices have the potential to accelerate scientific progress by allowing others to reuse research outputs, and by promoting rigorous research that is more likely to yield trustworthy results. However, these practices are uncommon in many fields, so there is a clear need for training that helps and encourages researchers to integrate reproducible research and open science practices into their daily work. Here, we outline eleven strategies for making training in these practices the norm at research institutions. The strategies, which emerged from a virtual brainstorming event organized in collaboration with the German Reproducibility Network, are concentrated in three areas: (i) adapting research assessment criteria and program requirements; (ii) training; (iii) building communities. We provide a brief overview of each strategy, offer tips for implementation, and provide links to resources. We also highlight the importance of allocating resources and monitoring impact. Our goal is to encourage researchers - in their roles as scientists, supervisors, mentors, instructors, and members of curriculum, hiring or evaluation committees - to think creatively about the many ways they can promote reproducible research and open science practices in their institutions

    Überblick zum Themenbereich Verteilte Simulation

    No full text

    Experiences from the application of HLA-based distributed simulations in the production of vehicles

    Get PDF
    This article discusses the application of distributed simulation in the context of vehicle production planning. The experiences are derived from a real industrial project which aimed at connecting up to seven individually developed simulation models. The article reports on lessons learned which include the need for efficient ways to manage and control HLA-based distributed federations, to maintain a single code base for the models as well as lookahead considerations for synchronization

    Experimental study about the influence of adhesive stiffness to the bonding strengths of adhesives for ceramic/metal targets

    Get PDF
    The aim of the investigations presented here was to understand how the stiffness of the adhesive affects the failure of ceramic tiles adhered to metallic backings. The working hypothesis was that varying the adhesive stiffness could have the same effect on the ballistic performance as a variation of the adhesive thickness. Two different projectile/target combinations were utilized for ballistic tests in order to generate extremely different loading conditions. With targets consisting of 6 mm aluminum oxide ceramic and 6 mm aluminum backing, complete penetration occurred in each test with 7.62 mm tungsten carbide core AP ammunition at an impact velocity of 940 m/s. In contrast, with ceramic tiles of 20 mm thickness on 13 mm steel backing, no penetration of the ceramic occurred at the impact of a 7.62 mm ball round at 840 m/s. Four different types of adhesive (high-strength till high-flexible) were tested in both configurations. The elongation of the adhesive layer, the deformation of the metallic backing and the failure of the ceramics were observed by means of a high-speed camera during the projectile/target interaction. The results of the ballistic tests showed that a higher fracture strain caused a larger deformation of the backing compared to adhesives, which exhibit a high tensile strength and low fracture strains. The experimental results indicate that the damage behavior of the ceramic/metal composites depends on the absolute elongation of the adhesive layer. This can be controlled either by the thickness or the stiffness of the bonding layer

    A Logical Basis for Quantum Evolution and Entanglement

    Get PDF
    International audienceWe reconsider discrete quantum causal dynamics where quan-tum systems are viewed as discrete structures, namely directed acyclic graphs. In such a graph, events are considered as vertices and edges de-pict propagation between events. Evolution is described as happening between a special family of spacelike slices, which were referred to as locative slices. Such slices are not so large as to result in acausal influ-ences, but large enough to capture nonlocal correlations. In our logical interpretation, edges are assigned logical formulas in a spe-cial logical system, called BV, an instance of a deep inference system. We demonstrate that BV, with its mix of commutative and noncommutative connectives, is precisely the right logic for such analysis. We show that the commutative tensor encodes (possible) entanglement, and the non-commutative seq encodes causal precedence. With this interpretation, the locative slices are precisely the derivable strings of formulas. Several new technical results about BV are developed as part of this analysis
    corecore